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SYMPOSIUM ON NEW METHODS OF SEPARATION (continued)

Some Modern Aspects of Ultracentrifugation

E. T. ADAMS, JR., WILL E. FERGUSON, PETER J. WAN,
JERRY L. SARQUIS, and BARNEE M. ESCOTT

CHEMISTRY DEPARTMENT
TEXAS A&M UNIVERSITY
COLLEGE STATIONy-TEXAS 77843

Abstract

Shortly after the ultracentrifuge was developed, it was realized that molecular-
weight distributions (MWDs) of polymers could be obtained from sedimenta-
tion equilibrium experiments. Although numerous attempts have been made
to obtain MWDs from sedimentation equilibrium experiments, the results were
not very satisfactory, and most MWDs were obtained from sedimentation
velocity experiments. Only recently have some satisfactory methods been devel-
oped for sedimentation equilibrium experiments. These methods were restricted
to ideal, dilute solutions and to ultracentrifuge cells with sector-shaped center-
pieces. Both of these restrictions can now be removed. Methods for correcting
for nonideal behavior are shown. Procedures for obtaining MWDs from
sector—or nonsector—shaped centerpieces are shown. These procedures are
illustrated with real examples, and a comparison between MWDs obtained by
sedimentation velocity, sedimentation equilibrium, and gel permeation chro-
matography experiments is shown.

Self-associations can be studied by various thermodynamic methods (osmo-
metry, light scattering, or sedimentation equilibrium) that give average or ap-
parent average molecular weights as a function of associating solute concentra-
tion. Of the various thermodynamic methods, the sedimentation equilibrium
experiment is the best way to study self-associations. Because of the interrela-
tion between average or apparent average molecular weights, the theory
developed originally for the sedimentation equilibrium experiment can be
extended to other methods. We show methods for analyzing several types of
self-associations, using real examples. The advantages of thermodynamic over
transport methods for studying self-associations are discussed; furthermore, we
show how thermodynamic and transport experiments can be combined to yield
more information about the self-associating species.
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INTRODUCTION

The year 1974 marks the fiftieth anniversary of the ultracentrifuge; the
first paper using the term ultracentrifuge was published by Svedberg and
Rinde in 1924 (]). In the ensuing years the ultracentrifuge has had a wide
impact in various areas of chemistry, but its most influential role has been
in biochemistry, where it has been described as one of the most important
research instruments in the field (2). According to Svedberg (I, 3), an
ultracentrifuge has the following characteristics: it has a precise speed
control; it has an optical system for viewing and/or photographing the
experimental data; and it is free from convection. Another criterion
encountered on modern ultracentrifuges is that they also have a good,
variable range temperature control system. Instruments meeting these
criteria were originally called ultracentrifuges, but are now more com-
monly referred to as analytical ultracentrifuges. Other high-speed centri-
fuges used in isolation of viruses, nucleic acids, or proteins are referred to
as preparative ultracentrifuges. This article will be restricted to analytical
ultracentrifugation.

Although many people believe that the ultracentrifuge is restricted to
biochemistry or biophysics, this is not the case. This versatile instrument
can be applied to colloid chemistry (3), to physical chemistry (3-5), to
polymer chemistry (3-5), and to inorganic chemistry (3-5). It has been
used to study the distribution of radii in colloidal gold sols (1, 6), to
determine activity coefficients in silicotungstic acid solutions (7) and
sucrose (8), and also to find the degree of aggregation of various salts in
aqueous solutions (9-13). In polymer chemistry the ultracentrifuge has
been used to measure sedimentation coefficients, average molecular
weights, second virial coefficients, and molecular-weight distributions
(5, 15-24). Density gradient sedimentation experiments have been used to
show that the nitrogen of the deoxyribonucleic acid is divided equally
between two subunits which remain intact through many generations
(25, 26). The density gradient experiment has also been used to study
greases and polymers (27, 28).

Because the subject of analytical ultracentrifugation is so vast, this
paper will be restricted to two areas of interest to the authors: self-
associations and molecular weight distributions. Both areas were con-
sidered early in the development of the ultracentrifuge (3), but it has only
been in the last few years that real breakthroughs have been made in these
areas (16-24, 29-35). Another reason for considering these areas is that
they can be studied by other methods (36, 37), chromatography for ex-
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ample (38-41), so that comparative studies can be made. With self-
associations we will show how data from two or more types of experiments
can be used to extract more information about the system. For instance,
values of the equilibrium constant(s), X;, and of the monomer concentra-
tion, ¢,;, obtained from sedimentation equilibrium experiments can be
used with sedimentation velocity experiments (performed under the same
solution conditions) to evaluate the sedimentation coefficient of the asso-
ciating species (42), or they might be used with analytical gel chromato-
graphy experiments to extract the partition coefficients (42). In molecular
weight distribution studies, a comparison can be made with molecular
weight distributions obtained from sedimentation equilibrium, sedimenta-
tion velocity, and analytical gel chromatography experiments (20). Readers
interested in these and other areas of ultracentrifugation should consult
the various reviews and monographs on the subject cited above.

MOLECULAR-WEIGHT DISTRIBUTIONS

Introduction

The idea of obtaining molecular-weight distributions (MWD) of non-
associating, heterogeneous polymer solutions goes back to Rinde (6) in
1928. Several methods based on procedures proposed by Rinde were tried
with varying success (4, 5, 24); in some cases experimental error produced
negative values for the differential distribution of molecular weights,
JS(M). Two recent developments, one by Donnelly (16, 17) and one by
Scholte (18-20), have reopened interest in obtaining MWDs from sedi-
mentation equilibrium experiments; both methods were restricted to ideal,
dilute solutions and to cells with sector-shaped centerpieces. These
restrictions have recently been removed (24), and it has been shown experi-
mentally that one can obtain MWDs from nonideal solutions (43, 44).
Good agreement has been observed with the MWD obtained on a dextran
sample by analytical gel chromatography and by sedimentation equilib-
rium experiments after correction for nonideal behavior. In this section
we shall describe these developments. More complete details on obtaining
MWDs are to be found in papers by Adams et al. (24), by Gehatia and
Wiff (23, 45-49), by Donnelly (16, 17), and by Scholte (/8-20).

The Basic Sedimentation Equilibrium Equation

If one assumes that the refractive index increments, y;, and the partial
specific volumes, 7;, for the polymeric components are the same, then one
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can obtain the weight-average molecular weight, M,, or its apparent
value, M,, ., from sedimentation equilibrium experiments. The condition
of sedimentation equilibrium requires that the temperature, T, be constant
and that the total potential, ii;, of component i (3-3, 24) be constant at
each radial position r, in the solution column of the ultracentrifuge cell.
The quantity j; is defined by
wir?
A= - )

For component i, y, is the molar chemical potential, — M ,w?r?/2 is the
centrifugal potential, M, is the molecular weight, and w = 2n(rpm)/60 is
the angular velocity of the rotor. The radial position r is restricted to
distances between the position of the air-solution meniscus, r,, and the
position of the cell bottom, r,, i.e., r,, < r < r;. It is convenient to define
two new quantities (5, 24)

a - 5/’0)0)2(’1,2 — "mz)

A= 2RT @)
and
r 2 r2
{ = r—br_7—z 3)
b m

Here © is the partial specific volume of the solute, p, is the density of the
solvent, and R is the universal gas constant (R = 8.314 x 107 ergs/deg-
mole). Note that £ = Owhenr = r,,and £ = | whenr = r,,.

The sedimentation equilibrium equation for component i can be written
as (15, 24)

de
—AMic; = 'd_fi — AeM, zk: By oM, C))
The quantity B;;’ represents a nonideal term; it is defined as
B, =B b 5
w = By + 1000, (%)

Here c; is the concentration (in grams/liter) of component i at radial posi-
tion r, i.e., it is ¢;. For simplicity the subscript r will usually be dropped.
It is assumed in the treatment we are using that the natural logarithm of
the activity coefficient of component i can be expressed as (4, 5, 15, 24)

Iny, = MY Byc, + -+ 6)
k
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where

dlny;,
B"‘ _< ack >T.P,(:j;€k (7)

Most ultracentrifuges are equipped with refractometric (Rayleigh and
schlieren) optics. The schlieren optical system gives information propor-
tional to dc/dr vs r, and the Rayleigh optics give information proportional
to ¢ vs r. Figure 1 shows the type of patterns produced by the two optical
systems. Since the schlieren optical system gives information proportional
to dc/dr, we must sum the terms in Eq. (4) over all / solute components,
Thus

£=—' Z“'i—c“= _ACMW,.+ AZZCiCkBI'klMiMk (8)
dé & dE Tk
Here
de 2 . dc
dé_ _(rb —rm)d(rZ) (9)
and
er = 2 ciMi/Zci (10)
Equation (8) can be rearranged to give
de —AcM,,
d—é B l + <Bik,>rCer (11)
= _AL'erapp

provided {B,'>,cM,, < 1. The quantity (B, >, is defined by

Zi Zk ciecM M, By
B>, = 12
CBu'> Y Y coM M, a2

Instead of having a uniform solution as one has with light scattering or
with osmometry, the centrifugal field causes a redistribution of the i
polymeric components, which is why (B}, varies with r. This is the term
which has caused difficulty in analyzing nonideal polymer solutions by
sedimentation equilibrium experiments. An ideal, dilute solution will be
defined as one for which (B>, = 0. In this case M, ,,, = M,, and
the basic sedimentation equilibrium equation becomes

defdé = —AcM,, (13)
(<Bik,>r = 0)
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FiG. 1. Diagrams of the schlieren (lower) and the Rayleigh interference (upper)
patterns obtained from sedimentation equilibrium experiments using double-
sector centerpieces.
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In ordér to deal with the (B, >, term, it is necessary to make some as-
sumptions. Three cases are described below (43).

Case { Assume that all the (B> are equal. For this case B;' = B and
<Bik'>rchwr = Bchwr (14)

Case II. Assume the speed effect to be small so that it can be ignored,
and let (B,'), @ B, the light scattering second virial coefficient. As the
rotor speed goes to zero, the c;, — ¢;°, the initial concentration of com-
ponent i. Here B is defined by

B = Zi ZkﬁﬁcMiMkBik' (15)
Ls Zi Zkf;'f;(MiMk
and
fi = ¢eg (or f = ¢°/eq) (16)
is the weight fraction of component i (or k). Note that
Co = Z ¢® 17
Case II1. Here a speed effect is included. We assume that
(B> \°
{By'>, = Big + (%;’—‘}-’) A? = B;g + aA? (18)
co

The superscript 0 on the partial derivative means that this quantity is evalu-
ated in the vicinity of A = 0.

How does one evaluate (B;,’>,? For the first two cases (B>, is approxi-
mated by B;¢. Using Donnelly’s method (16, 17), if all the B;,’ are equal,
then there will be no speed effect on the MWD. If there is a speed effect,
then there will be a difference in the MWDs determined at two or more
speeds. This provides a test for the assumptions. The evaluation of B
from sedimentation equilibrium experiments has been described in detail
by Wan (43) and by Adams et al. (24) for ultracentrifuge cells with sector-
or nonsector-shaped centerpieces. The methods proposed by Albright and
Williams (15) can be applied to either type of centerpiece. Essentially the
method requires that a series of sedimentation equilibrium experiments
be carried out at different speeds (three or more speeds) for each solution.
Values of M,, .. .p, are calculated at each speed. These are defined by

Cp — Cpy
Mw cell app — bACO (19)




14:19 25 January 2011

Downl oaded At:

182 ADAMS ET AL.

for a sector-shaped centerpiece and by

I (tde
Mw cellapp = — X?oj'od_fdx (20)

for a nonsector-shaped centerpiece. The quantity x is the analog of £ for
a nonsector-shaped centerpiece; x is defined as (24)

_r S dr
~ e Sryar

Here f{(r) is a function that describes how the cross-sectional width of the
cell varies with radial distance r. Figure 2 shows the top views of a double-
sector centerpiece and of a multichannel equilibrium centerpiece. Once
one has run the experiments at different speeds it is necessary to evaluate

@2n

0 _ 1 0
Mw cell app —/{ln;l) Mw cellapp — Mw app
-

This can be done by plotting M,, .y .,, v A and extrapolating the plot to
A = 0; such a plot is shown in Fig. 3. The intercept of this plot gives
M) ety app- Alternatively one can plot Ac/co vs A or — [§(dc/dE) dxjeq vs A
depending on the type centerpiece one uses (24). The limiting slope of these
plots as shown in Fig. 4, gives M$ app fOT €ach cq. Note that these plots
must go through the origin; for example, with a sector-shaped centerpiece
Ac = 0 when A = 0. Note also that at constant ¢y, Ac/c, is a function of
A. Thus one could use regression analysis to obtain a polynomial of the
form

Aclco = a + BA + pA* + ... (22)

The quantity « should be equal to zero and f can be identified with M2

go
0
00

FiG. 2. Top view of double-sector and multichannel equilibrium centerpieces.

One side of either centerpiece is reserved for the solvent or buffer solution. The

arrow indicates the direction of increasing centrifugal field strength, With

multichannel centerpieces the most dilute solution is put in one of the centrifugal

or outermost holes, and the most concentrated solution is put in one of the
centripetal or innermost holes.
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FIG. 4. Plots of AJ/J, vs A. The limiting slope of each plot gives M , .. Dextran
T-70 dissolved in water. T = 25°C.

Fujita (5) has shown that the sedimentation equilibrium second virial
coefficient, ( B;'>, depends on A%. With the use of Eq. (18) one notes that
at constant ¢,

. . 1
Iim l/Mw cell app — ll\ln'(l)[— + (BLS + (ZAZ)CO + - '}

A—0O Mw
= l/Mw + BLSCO = I/M‘g app (23)
and that
}\l_{%m e (I/Mw cell app) = UCp (233')

Equation (23a) shows how one might try to evaluate «. The quantity B¢
is obtained from the slope of a plot of 1/M? app V8 Co (see Eq. 23); a plot
of this kind is shown in Fig, 5. Thus the required quantities for the non-
ideal correction can be evaluated from the experimental data. Having an
estimated value of the {B;'>,, it is possible to calculate ideal values of ¢
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o (gm/1)

0 2 4 6 8 10 12

2.8 1 ¥ Ll L] LS T

2.6 F o Data from Figure 4

o Data from Figure 3

w app

M

Jo (fringes)

F1G. 5. Plots of 1/M?2 .5 v8 Jo for the dextran T-70 sample using data from
Figs. 3 and 4. The intercept of this plot gives 1/M,,. The average value of M,,
is 6.59 x 10* Daltons.

or dc/dr (24). Equation (11) can be rearranged to give
1 -1 1 KBy,

Cer = (dc/dé)ideal B Cer app A

24

The values of (dc/d€);4.,; S0 Obtained can be used with Scholte’s method or
any of the other methods for obtaining MWDs. For Donnelly’s method the
quantity (d In ¢/d&);4., is needed. Thus Eq. (11) can be rearranged to give

1 -1

M, |:_1_dln c:l
A dé ideal

1
M,,

i

— {By' e (24a)

app
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Here
ldinc
_XT = er app (25)
An additional quantity required for Donnelly’s method is c¢y/[c(¢ =
D)}igear- This is readily obtained from

Co _ ('@ ]
C(t = l)id“‘ [0 [C(é = 1) idealdé (26)
Note that
$/dlnc B (&) ]
E' < g >id°ald€ =n [C(f = 1) |idea @n

Concentration and Concentration Gradient Distributions

One of the unique features of the sedimentation equilibrium experiment
is that it allows the evaluation of average molecular weights without any
prior knowledge of the MWD. In addition it is also possible to obtain the
MWD from sedimentation equilibrium experiments. No other physical
method for studying macromolecules has this versatility. We have shown
in the previous section how nonideal effects can be accounted for, so it will
be assumed that nonideal corrections have been applied, and in the discus-
sion that follows equations applicable to ideal dilute solution conditions
will be used.

For ideal, dilute solution conditions, Eq. (4) becomes (4, 5, 24)

dln ¢
dé

This equation can be integrated between & = 1 and ¢ = £ and then recast
in exponential form to give

cd) = el = Dexp[-AM] (29)

From Eq. (29) one notes that the concentration distribution for component
i is in exponential form. Different values of M; will give different concentra-
tion distributions and also different concentration gradient distributions;
thus one will expect different values for any average molecular weight at
any radial position. The weight average molecular weight at any radial
position, M, is given by Eq. (13) or its more familiar form (3-3, 24, 50)

dinc
d(r?)

= —AM, (28)

= AM,, (30)
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where

A = (1 — ip)w*/2RT (€1))
The z-average molecular weight at any radial position, M,,, is obtained
from (3, 50)

d(cM.,) M.,

M, = de = er +c de (32)
Here
ich2
Mzr = ZZ_-L‘:_AIL (33)

In principle it is possible to obtain any higher average molecular weight,
since (3-5, 24, 50)

d(cM MM,y --- M(z+q—1))r

M, = 34
raor d(CMwMzMz+l e M(z+q—2))r ( )
Note that
C’Ml,(q+2)
Miiy, %c‘_ y@n  4=012... (35)

In practice it is virtually impossible to go beyong M,,, since numerical
differentiation is involved. The number-average molecular weight at any
radial position, M,,, is not readily obtainable, since (50, 57)

S Crm _ § 2
M, M—nr,,. =4 Lm cd(r?) (36)

Here two unknowns, M,, and M,,_, are involved. Even though this equa-
tion can be transformed to one equation in one unknown, it is still difficult
to obtain M,, (50).

The quantities M,,, and M,, are useful in the analysis of self-association;
they can also be used to develop methods for the evaluation of the cell
averages M,, .., and M, ;. For nonassociating polymers in ideal, dilute
solutions, one can obtain the M,, and M, of the polymer from measure-
ments of M,, ..,; and M, ;. In order to evaluate M,, .., or M, .., it is
necessary to know the shape of the cell (centerpiece), since the conserva-
tion of mass equations enter into these equations. The conservation of
mass states that the total amount of solute in a closed system is constant
at any time. The mass of solute is given by (4, 5, 24, 50)
ry »

¢, dV 37)

rm

mass solute = j
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Sector-Shaped Centerpieces

For a sector-shaped centerpiece
Oh
dV = > d@r? (38)

where 6 is the sector angle and 4 is the cell thickness. The amount of
solute at the beginning of the experiment is given by

Oh
mass solute = 70°(r”2 - 1,2 39)
and at sedimentation equilibrium it is given by

O >
mass solute = —251 J ¢, d(r? (40)

r

Setting Eqgs. (39) and (40) equal to each other, one obtains (3, 5, 24)

%mz—mﬂ=j“qaﬁ) (@1

fm

or
Co = J‘o c(§) d¢ (41a)

In order to evaluate c,, the meniscus concentration, one must note that

™

m—»W—#wjm—mw% 42)

rm

The quantity ¢, — ¢, is the difference in concentration between the con-
centration at » and that at r,,; it is directly proportional to the difference
in Rayleigh interference fringes between these two radial positions. The
quantity M,, ..y, is defined by (3-5, 24, 51)

_ I M,,cd(r?)
M, = WT)— (43)

Since cM,,, = Yc;,M,, one notes that

_ ZiMij::,Ci d("z)
w cell Co("bz _ rm2)

- EiMicio(rbz - "mz) — icioMi
Co(’bz - ’mz) 21 Cto

= M, of the original solution (44)

M
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The insertion of Eq. (30) into the numerator of Eq. (43) leads to

mdlnec 2
M — Irmd(r)Cd(r)_cb—cm
T et — ) T A
[A = 4@ = rY) 45)
The quantity M, ., is defined by (3-5, 24, 51)
(%), - G&).]
T M., dc rdr rdr
M = j"m zr — rp m ]
z cell jz,b,, dC 2A(Cb — m) (46)
Here M,, is given by (20)
G 7)
zr = ﬂ dC (47)

One can use arguments similar to those used in Eq. (44) to show that
M., cenris the M, of the polymer. For nonideal solutions one obtains M, ,,

and M, ,,, from Eqs. (45) and (46). It can be shown that as A — 0, M,

- M) ..., Where

Mo - Mw cell
VEP 1 4+ ByscoM,, cent

(48)

A similar relation can be developed for M, ,,, (24, 43).
Nonsector-Shaped Centerpieces
With nonsector-shaped centerpieces dV is given by
dV = hf(r)dr 49

and the conservation of mass equation (see Eq. 37) becomes (3, 24)

¢ J £(r) dr = J ¢ f(r) dr (50)

r

or using dx (see Eq. 21)

1
co = f (@) dx 1)

To evaluate c,, it is noted that

(¢ — c) j:fo)dr =f

rp

(Cr - cm)f(r) dr (52)

r
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or using dx
1
(o= e = [ 1e®) = et = D0 ax (53
The quantity M,, .., is defined by (4, 18)
S M ) dr
weell ™ .“::- c,f(r) dar
ij’b f(r)de
24),. —1 ('de
="ldrm T j JEY (54)

co r flrydr A

'm

If the solution is nonideal, then Eq. (54) gives M,, ,,,. The limit of M,, .
as A - 0 becomes M), ,, which is defined by Eq. (48). The quantity
M, .. is defined by (13, 50)

"o de
[ Mzrf(r) T
Mz cell = =

T
AL e

j‘u @ dc

m

(59)

Donnelly’s Method for MWDs (16, 17)

This method is based on data obtained from a single sedimentation
equilibrium experiment. It is quite good with unimodal MWDs, but it
may not be as good as Scholte’s method with multimodal MWDs. The
starting equation here is Eq. (29). In order to make it more useful, it is
necessary to relate ¢; (¢ = 1) to the initial concentration of i, ¢°; this
requires the application of the conservation of mass equation. Thus this
method must be considered separately for each of the two kinds of center-
pieces.

Sector-Shaped Centerpieces

For component i the conservation of mass equation becomes

¢ = L ci®) de (56)
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The insertion of Eq. (29) in Eq. (56) and subsequent rearrangement leads
to

AMc®
€ =1 = T o= AM)Y G7
The substitution of Eq. (57) into Eq. (29) yields
AMc® exp(—AM£)
ci(é) - 1 _ exp(—AM,) (58)

Summation over the i solute components followed by division of both
sides by ¢, leads to (16, 17, 24, 50)
&) = @ _wAM, exp(—AM%)
T g 4 1 —exp(—AM)

(59)

Here f; = ¢,°/c, is the weight fraction of component i. Equation (59) can
be differentiated with respect to & to give

, ~1dc(&) AzMizf exp(—AM)
—0QO = = LT = exp(<AM)

= U (60)

Equations (59) and (60) are used in Scholte’s (18-20) method. Now if one
assumes that a continuous distribution of molecular weights is present,
then £, is replaced by f(M) dM which is the weight fraction of solute having
molecular weights between M and M + dM, and the summation is
replaced by an integral running between 0 and co. Thus Eqs. (59) and (60)
become (16, 17, 24, 50)

® AMf(M) exp(— AME) dM
o) = j o 1 — exp(—AM) (61)
and
oo 1de® [ AMAS(M) exp(—AME) dM
0O =~ & ‘L I — exp(—AM) 62)

Here f(M) is the differential distribution of molecular weights; this is the
quantity we want to determine. Donnelly pointed out that Egs. (61) and
(62) are Laplace transforms (16, 17); if one can find an analytical expres-
sion for the Laplace transform, then the MWD can be obtained from the
inverse of the Laplace transform. In order to see this more clearly, in
Eq. (16)let £ = 5, t = AM, and

AMf(M)  f(M)
é(1) = 1 —exp(—AM) 1 — exp(—1t)

(63)
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Then it follows that
L{$(0)} = AD = r (e~ dt = £(5) 64

Here L{¢(2)} is the symbol for the Laplace transform of the function
¢(2). In order to use L{¢(¢)}, we must find an analytical expression for it;
in other words, what is the form of f(s)? Donnelly solved this neatly (i6,
17, 24). Let us define

F(n,u) = (dln p (65)
dr?
where
r2 —r,?
u=rb'—2‘_—rm2=1—f=1—-s (66)

Suppose that one makes a plot of F(n, #) vs u, and suppose that this plot
is a straight line of the form

Fin,u) = P — Qu 67
Here P is the intercept at ¥ = 0 and Q is the slope. Now note that
d 2
du =) (©8)
ry ~ rm
or
d(r®) = (ry2 — rp?)du = bdu (68a)
The integral
rdlne & _ 4(9)
j’m d(’,Z) d(r ) = In . = In C(f — 1) (69)
and
"dlne 0 @)
oo | T = o (70

If Eq. (70) is multiplied by Ac(é = 1)/c, = 1/K, then we obtain AG(¢).
Thus

Lig} = A0 =~ Dexp | T a7

'm

1 rdine |, 1 “ bdu
—Kexpj —(r—zjd(r)=f<expjoF(Tu) (71)
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The insertion of Egs. (65) and (68a) into Eq. (69) leads to

r dinc “ bdu
J,,,d(—rf)d"” =J o FOm, %) 72)

Since F(n, #) = P — Qu, one notes that

“ bdu b P
[ m =g )
Using Eq. (66) this becomes
b P b P
0" F=0u~ 0" OIFID) — 1% 5] (732)
Therefore
1 P bio
L4601 =80 = | 5775 77
P b/Q 1 n
e L]
where a = (P/Q) — 1 and n = b/Q.
A well-known mathematical relation states that (16, 17, 24)
(sl;fn()z),, = j: tn—le—(s+a)t dt (75)

where I'(n) is the gamma function of n. Thus it follows that

L{g(t)} = r H)e~ di

o 5/Q +(b/Q)—~1
_ J' (P/?() tI‘(b/Q) exp {—[(P/Q) — 1]t — st} dt (76)

V]
Comparison of the two integrals in Eqgs. (75) and (76) indicates that

(P/Q)b/Q /-1
YO0 ="k TEo)

It follows from Eq. (63) that

(p/Q)b/Qt(b/Q)—z _ e B
S(M) ==X T ¢ [P/~ 11(] _ =) (78)

e~ [PIQ 1]t )
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Nonsector-Shaped Centerpieces (24, 43)

Here the conservation of mass equation for component i is (24, 43)

c® = r c; dx (79
(1]
The insertion of Eq. (29) into Eq. (79) leads to
¢ exp(—=AM )
=D = Tlexp(~AME) dx 0
The analogs of Eqgs. (59) and (60) become (24, 43)
C(E) fiexp(-AM ()
U = = rlenp(-AM D] &= @D
and
, —1 dC(é) M. fi exp(—AM{)
00 = = e Al
= V(A, f) (82)
For a continuous distribution of molecular weights, 8(¢) becomes
® f(M) exp(—AME) dM
40 = | e Ao ®)
Letting t = AM, ¢ = 5, and
f(M)
") = [ Texp(— AMDT dx ®9

one can show that the Laplace transform, L{y(¢)}, of y(¢) is given by
(24, 43)

ABE) = Liy)} = [ RO (85)

Now we can follow the previous procedure. F(n, u) (see Eq. 65) is defined
in the same manner, and Eq. (71) applies to this case also. So, if F(n, u) =
P — Qu, then L{y(¢)} will also be defined by Eq. (74). However, f(M) in
this case becomes

(P/Q)”/Q 1o -1

1
fM) == — ey €O L[exp(-AMé)ldx (86)



14:19 25 January 2011

Downl oaded At:

ULTRACENTRIFUGATION 195

Thus the only difference in the two methods is that

- —AM
o = [L2 2B g, )
for a sector-shaped centerpiece, and
70y = { [ exp(=Ab0 e (58)

for a nonsector-shaped centerpiece. Table I in the paper by Adams et al.
(24) gives the Laplace transform for three different equations for F(n, u);
a fourth case is described by Donnelly. For other situations not covered
by these four cases, one might be able to use the complex inversion
method to find the inverse of the Laplace transform. Although the mathe-
matical treatment may look formidable, this is really a beautiful and
simple method to use.

Results with Donnelly’s Method

Figure 6 shows plots of F(n, u) vs u (see Eq. 65) for a dextran sample
dissolved in water. The sedimentation equilibrium experiments were run
at 25°C and at 8000 rpm. The upper plot has not been corrected for

6] 02 04 06 08 10

FiG. 6. Plot of F(n, u) vs u for Dextran T-70 in water. T" = 25°C. This plot is re-

quired for Donnelly’s method for obtaining MWDs. These experiments were

carried out in multichannel, equilibrium centerpieces. The upper plot (D) uses

data uncorrected for nonideal behavior, whereas the lower plot () uses data
corrected for nonideal behavior assuming B.s = {Bu>:.
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nonideality, whereas the lower plot has been correcied for nonideality.
We then assumed (B,'), = B;s, where B,; was calculated from exper-
iments at different speeds. Equation (20) was used to calculate M, ..}, ,pp
at each speed. These results were extrapolated to zero speed, and B¢
was determined from a plot of 1/M?¢ app V5 €o (see Eq. 24). The value of B¢
used to obtain (d1n ¢/d&),,..; (see Eq. 24a) was 0.322 x 10~ ° for concentra-
tions in terms of green (12 mm) fringes. With the aid of Egs. (26) and (27),
one could proceed with the analysis described in the preceding section for
nonsector-shaped cells. Figure 7 shows the MWD obtained by Donnelly’s
method with sector- and nonsector-shaped cells. Note that the corrected
values agree with the manufacturer’s MWD which was obtained by a
combination of analytical gel chromatography and light scattering. Also
note that the uncorrected MWDs in no way resemble the corrected or
manufacturer’s MWD. Figure 6 shows the difference in corrected and
uncorrected plots of F(n, u) vs u; the correction makes quite a difference
in the MWD,

Scholte’s Method (18-20)

This method is based on Eq. (60) for a sector-shaped centerpiece or
Eq. (82) for a nonsector-shaped centerpiece and requires that one perform
sedimentation equilibrium experiments at different speeds on the same
solution. After the Rayleigh and schlieren data have been recorded at one
speed, the speed is changed, and the solution is allowed to come to sedi-
mentation equilibrium again; the photographic data are collected at each
new speed before going on to the next speed. This method uses the field to
fractionate the sample. At lower speeds the concentration distribution of
the lower molecular weight solutes is relatively smaller than that for the
high molecular weight solutes. At higher speeds the larger molecular
weight solutes are pushed toward the cell bottom and the lower molecular
weight solutes are distributed throughout the cell.

Sector-Shaped Centerpieces

The starting equation here is Eq. (60). Scholte designates the derivative
as U(A, £); thus he writes (18-20, 24)
1 de($)
U(A, 5)] - —CO df
ASM? exp(—A;M5)
R e wearsrr oy w7 e

= z::f‘K” + 9 (89)
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FiG. 7. MWD for the Dextran T-70 sample by Donnelly’s method with and
without the B, s correction for nonideality. Note how much better the corrected
data agrees with the manufacturer’s MWD (solid line), which was obtained by
analytical gel chromatography. An even better agreement is obtained when a
rotor speed correction is included. The data in these plots were collected using
sector- and nonsector-shaped centerpieces.
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where

AZMP2 exp(—A;ME)

and §; is a term expressing experimental error. The quantities subscripted
by i depend on the molecular weights, M, that are chosen; thus f; will be
the weight fraction of component { whose molecular weight is M,. The
quantity A; has the subscript j to indicate that this quantity depends on the
speed used and not on the molecular weight of component i. The experi-
mental data are usually read at five evenly spaced values of &, i.e.,at £ = 0,
1/4, 1/2, 3/4, and 1, although at some speeds one will not be able to read
data at all of the values of £. In order to use Scholte’s method (18-20),
one must assume a discrete range of molecular weights, M;, which will
bracket the sample. For example, the molecular weights chosen for this
first range or first series might be M, = 2,500, M, = 5,000, M; = 10,000,
and so on until a molecular weight larger than the largest expected value
for the polymer is attained. It was found by experience that the interval
between molecular weights is logarithmic, and that the series is best con-
structed so that each successive molecular weight chosen has twice the
value of the molecular weight immediately preceeding it. The speeds chosen
should be such that the ratio of successive w? is two, or as close to this
ratio as possible. The values of U(A, &) that are available should exceed
the number of M, that are chosen. The first choice of molecular weights is
called the first series. Once the first series is chosen, the U(A, &) values can
be used to write down a set of linear equations.

U(A’ 6)] =f1K11 +f2K21 +f3K31 + - 4+ 51
U(I.\, ), =f1.K12 +f2_K22 +f3{<32 4+ 0+ c?z 1)
UA, &), = Ky + fiKan + foKsy + <+ + 8,

Scholte (18-20) solves this set of equations by a linear programming
technique. These equations are perfectly adapted to linear programming,
since (1) we are dealing with a set of linear equations involving only
positive quantities; (2) )..f; = 1, i.e., the sum of all the weight fractions
must be one; (3) each f; must satisfy the condition 0 < f; < 1; and (4) the
f7's are chosen so the sum of the absolute value of the error is a minimum,
ie., Zj|5,-| is a minimum. The f; are determined on a computer.

The set of f; obtained from thé computer program for the first series of
molecular weights is not unique. One could choose another set of M’s,
and this is just what Scholte does. A second series of M, is obtained by
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multiplying each M; in the first series by 2'/%, ie., M/(2nd series)
= 21/% x M (Ist series). Another array of U(A, &), is set up for the
second series, and again the computer is used to obtain the f; using the
linear programming technique. This procedure is repeated with a third
series, M,(3rd series) = 2'/2 x M (Ist series), and a fourth series, M,
(4th series) = 23/* x M (Ist series). Table 1 shows an example of the
type of data used and the results obtained from the computer program
for the first and third series. This data is taken from the work of Scholte
(18). The material used was a polyethylene sample which was dissolved in
biphenyl; the experiments were performed at the theta temperature,
123.2°C. Figure 8 shows the MWD that was obtained; note that Scholte
plots his MWD as Mf(M) vs M. It is quite evident from this figure that
Scholte’s method can detect a multimodal MWD.
How does one obtain the MWD? First of all note that

Y. fi (any series) = 1 (92)
Y. /i (all four series) = 4 (92a)

and
Z f:/4 (for all four series) = 1 (92b)

Thus Eq. (92b) is also a solution, and it could be used in obtaining the
plot of f(M) vs M since more points would be available. In order to obtain
a plot of f(M) vs M note that

0
Y fi (any series) = 1 = [ f(M)dMm 93)
i °
TABLE 1a
Tabulation of Raw Data Needed for Molecular Weight Distribution
cd
A x 108 0 1/4 12 3/4 1

25 0.294 0.260 0.232 0.208 0.187
10 2.121 1.237 0.799 0.554 0.405
40 1.346 0.639 0.372
160 0.959 0.337 0.144

“Note that A = (1 — #p)w?(r,2 — r,?)/2RT.
f - rbz . r2
th — rm2
& =0 whenr = ry.
E=1whenr=r,.
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TABLE 1b
Results Obtained from Computer Program*®
First series Third series

M, s M2(M), M. fi M2,

8,839 0 0 12,450 0 0
17,678 0.031 790.8 24,900 0.075 2,694.81
35,356 0.084 4,285.6 49,800 0.149 10,707.36
70,712 0.313 31,937.7 99,600 0.453 65,106.49
141,424 0.450 91,833.8 199,200 0.291 83,646.75
282,848 0.104 42,447.6 398,400 0.011 6,323.81
565,696 0 0 796,800 0.012 13,797.40
1,131,392 0.015 24,489.0 1,593,600 0.009 20,696.10
2,262,784 0.0021 6,856.9 3,187,200 0.0002 919.83

If 0.9991 X 1.0002

“For the second series (not tabulated): M,(2nd series) = M,(Ist series) x 24, For
the third series: M,(3rd series) = M (Ist series) x 2!'/2, For the fourth series: M, (4th
series) = M (1st series) x 23/4,

Note that

1. Zf(Ist series) = 0.9991.
2. Zfi(2nd series) = 1,002.

3. j: M) My = At MsIMPOD),

_ 0.693 5
4 atl 4 series 0.693

4 M, = j:’ Mf(M)dM = j: MZf(M)‘%’
= A ln Mlll g\er(el[sz(M)]‘
_ 0693 M.,

4 all 4 serles 0.693
Using data from the first and third series

A =282 _ 0346~ 12
I[M (M), = 406,533.96

By the trapezoidal rule

M, == 140,661 = x 406,533.96

0.693
2
Scholte obtained 141,000 from the MWD
141,000 from experiments at different speeds
142,000 from measurements at one speed
Sample: Polyethylene L-30-76. Solvent: Biphenyl. Temperature: 123.2°C (theta
temperature),
Data taken from Scholte’s papers (18, 19).



14:19 25 January 2011

Downl oaded At:

ULTRACENTRIFUGATION 201

08

o7
o6r
05
04t
03¢t
02}

Mt(M)

[oR 3
0

104 2 5 100 2 5 10

FiG. 8. Scholte’s method for MWDs. This is a plot of Mf(M) vs M for poly-
ethylene dissolved in biphenyl at the theta temperature (123.2°C). Redrawn
from the data obtained by Scholte (I8, 19).

Thus the area under the curve for the plot of f(M) vs M must be 1. Clearly
we cannot plot f; vs M, even if the intervals between successive molecular
weights, AM, is constant, since the area under this curve would be AM.
We could plot f;/AM (for one series) vs AM or f;,/4AM vs AM (for data
from all four series). But, now note that the interval between successive
molecular weights is 2'/%, i.e., M; = M2"*. Therefore, Scholte (18-20)
suggested that the following procedure be used.

Zf'(all four series) = | = r’f(M) M
[}

© d
= | mron G = smm s o0y, 09

Since Aln M, is constant and equal to (1/4) In 2 or 0.693/4, then

4
XIMIM: = 5553 95)
Since Y, f; (all four series) = 4, one notes that for all four series
4
Z 0. 693 ~0.693 (96)

Thus
[MfIM)]; = £,/0.693 (96a)
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So, if one plots Mf(M) vsIn M, where Aln M = In M; — In M; = 0.693/4,
then the area under the curve is 1. This is how Scholte obtained the curve
shown in Fig. 8.

Nonsector-Shaped Centerpieces (24, 43)
The starting equation here is Eq. (82), which can be written as

A;M, f exp(— A ;M E)

VA s = X exp(— A, M DT dx %
=LAy +9; 7
where
o AMiexp(=AML) (98)

i 7 [ilexp(— A, M E)ldx

and §; is the experimental error. Clearly one can set up an array of V(A, £)
in the same manner as one does with the U(A, &) (see Egs. 91), choose a
range of molecular weights, and solve for the f;’s by linear programming.
Thus the analysis is done in the same manner as before. Note that for each
choice of M,, the integral in Eq. (98) must be evaluated numerically; the
easiest way to do this is to use a computer.

Scholte has also modified his method so that instead of minimizing the
sum of the absolute value of the error, one minimizes the square of the
error. Results using both procedures give excellent agreement (20).

A

The Method of Gehatia and Wiff (23, 45—49)

Gehatia and Wiff have developed a very elegant method of determining
MWDs from a single sedimentation equilibrium experiment; they claim to
be able to analyze multimodal distributions. Figure 9 shows the results
obtained with a simulated MWD the solid lise represents the true value
and the circles represent the computed distribution. Their method was
originally developed for ideal, dilute solution conditions and for sector-
shaped centerpieces. Their starting equation is Eq. (61), which they write
as (23)

U@ = r K&, M)f(M) dM = j:'" KE MY(M)dM  (99)

Here

AM exp(—AME)

K@, M) =T p=Amn (100)
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F1G. 9. The Gehatia and Wiff method for MWDs. This is a simulated example

(23). The M+ = M/13,953. The solid curve represents the true distribution.
The open circles represent calculated values of f(M) vs M+,

M, is the largest molecular weight in the MWD ; beyond M., AM) =
0. They point out that equations of the type shown by Eq. (99) are improp-
erly posed problems in the Hadamard sense. What this means is that small
errors in U(&) can cause severe oscillations when one attempts to obtain
f(M) from this integral equation. A way to avoid this problem is to use a
regularizing function which dampens out the oscillations. Although their
model was originally set down for cells with sector-shaped centerpieces, it
could also be applied to cells with nonsector-shaped centerpieces. In this
case Eq. (83) would be used, and it would be written as

® Minax
Ve = j HE M)f(M) dM = f " N v (101

where

AM exp(—AME)
HE M) = Feexp(— AME) Mt (102)
The Gehatia-Wiff method need not be restricted to ideal, dilute solution
conditions. Our methods for correcting for nonideal behavior, or a method
proposed by Gehatia and Wiff (45, 49) for nonideal solutions, could be
used. Their method does require the use of a computer. For more details
the reader should consult the papers by Gehatia and Wiff (23, 45-49).

Molecular-Weight Distributions from Sedimentation Velocity
Experiments

The sedimentation velocity experiment can also be used to obtain
MWDs. Much of the pioneering work in the determination of MWDs
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from sedimentation velocity experiments was done by Prof. J. W. Williams
of the University of Wisconsin-Madison and his associates (4, 5, 24, 52).
The advantage of the technique is its rapidity; it takes about 2 hr to do one
sedimentation velocity experiment. The disadvantages of the method are
(1) its tediousness, (2) the fact that the theory is more empirical and not
on as rigorous a foundation as the sedimentation equilibrium method,
and (3) that two (sometimes three) extrapolations are involved. Never-
theless, there is an extensive literature on MWDs from sedimentation
velocity experiments or on differential distributions of sedimentation
coefficients, g(s), which can be transformed to MWD:s if a relation between
sand M is known (4, 5, 24, 52-57). With the advent of automatic plate
readers (58), the tediousness associated with this method can be alleviated,
and the availability of pulsed lasers and multiplexers may allow three to
five (depending on the rotor type) experiments to be performed simul-
taneously.

The differential distribution of sedimentation coefficients, g(s), is defined
by (4, 5, 43, 52, 53)

_lde _ 6o
g(s) = cds ~  ds

(103)

Here G(s) is the integral distribution of sedimentation coefficients; it is
defined by (4, 5, 43, 52, 53)

G(s) = j g(s) ds = T r2igifr2iio (104)
0 i

The quantity /i, = n — ng is the refractive index difference between solu-
tion (1) and solvent (n,); fiy; is the refractive index difference for compo-
nent i. In these equations ¢ is the concentration of the macromolecular
solutes, s is the sedimentation coefficient, r is the radial position in the
moving boundary, and r,, is the radial position of the air-solution men-
iscus. If the refractive index increments, ;, of the macromolecular com-
ponents are all the same, then n — n, = e, and G(s) becomes

G(s) = Y ricoifrm’co (105)

Equation (103) for g(s) is often written in a more useful form, namely,
(4, 5,43, 52, 53)

r3w?tdc
o =523(5), (109
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Here we have used the relations

¢ = co(rmlr)? (107)
de dedr
s~ drds (108)
and
dr d 2
e (. exp[sw®t])
= tw?r, exp(sw’t) = rw’t (109)

Since both sedimentation and diffusion occur in a moving boundary, the
experimentally measured g(s) is actually an apparent value, g*(s), which
is also defined by Eq. (106). The spreading of the moving boundary due to
sedimentation (s) is proportional to ¢, while the spreading of the boundary
due to diffusion (D) is proportional to ¢'/2 (5, 59). If the diffusion effects
are not too great, there should be an intermediate region of time in which
values of g*(s) and 1/t are linearly correlated. Thus extrapolation of g*(s)
to 1/t = 0 should eliminate diffusion effects; values of g*(s) at 1/t = 0
are designated by g °(s). With nonaqueous solutions, pressure effects are
important, and a correction must also be made for them. For details on
these corrections, consult the reviews by Williams et al. (4), Baldwin and
Van Holde (53), or the monograph by Fujita (5).

Once g°(s) has been obtained, it is necessary to remove concentration
dependence so that the true g(s) can be obtained. There are several ways
to solve this problem(s). In one method, introduced by Baldwin et al.
(3, 60, 61), values of g°(s)/g5..(s) at infinite time are obtained for each
boundary gradient curve at a certain initial concentration ¢,. Here g3,,.(s)
is the maximum value of g(s). Then one extrapolates 1/s to ¢, at each fixed
value of g °(s)/g max(s) for all of the sedimentation velocity experiments at
various initial concentrations. This procedure gives s,, the sedimentation
coefficient at zero concentration, for each ratio of g°(s)/g ou(s). One
obtains 1/g;...(s) from (5, 60, 61)

1/g max(s) = j: [9°(5)/g max($)] ds (110)

Once g ...(s) is known, then it is a simple matter to obtain g°(s,). A plot
of g °(so)vs s¢ gives the plot of the differential distribution of sedimentation
coefficients. The integral distribution of sedimentation coefficients, G(s,),
is obtained from Eq. (104). Figure 10 shows a plot of g°(s,) vs s, and
G°(sq) vs s for a gelatin sample (60).
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F1G. 10. Differential, g°(s) and integral, G °(so), distributions of sedimentation

coefficients for a gelatin sample (60). The Gaussian Curves a, b, and ¢ represent

values of g°(s) at ¢ = 0.746 g/dl (a), at ¢ = 0.306 g/dl (b), and at ¢ = 0 (c).

The integral distribution (— ), G°(so), is obtained by numerical integration of
Curve c.

In order to obtain a differential distribution of molecular weights, f(M),
one has to have an empirical relation of the form (4, 5, 43)

5o = KM*® (11D
or
so = KM * (111a)

The constants K and o depend on the temperature and the polymer-solvent
combination. This relation can be established by measuring the sedimenta-
tion coefficients and molecular weights (M) or weight-average molecular
weights (M,,) of some polymer fractions or some samples of the same type
polymer. Values of K and « for many polymers are tabulated in the
Polymer Handbook (14). If one lets g°(so) ds, be the weight fraction of
polymer having a sedimentation coefficient (at infinite dilution) between
5o and s, + ds,, then because of Eqs. (111) and (111a) one notes that

9°(so) dso = f(M) dM (112)
and

SM) = g(s9) Do - 208 Ls0) (113)

Figure 11 shows a plot of f(M) vs M for a trimodal polystyrene sample
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obtained at the theta temperature, 34.2°C, in cyclohexane by sedimenta-
tion equilibrium (top) and by sedimentation velocity (bottom) experi-
ments. Note the excellent agreement in the two techniques; the data are
taken from the paper by Scholte (20). Table 2 shows the values of M,
M., and M, obtained by the two ultracentrifugal techniques and by gel
permeation chromatography (20). The agreement between the methods
is quite good, demonstrating the versatility of the ultracentrifuge in this
area.

Concluding Remarks

By far the most commonly used method for obtaining a MWD is the gel
permeation method, which was developed by Moore (62) for the rapid
determination of MWDs of thermoplastics. Many more recent details
about gel permeation chromatography will be found in the book edited by
Ezrin (63). This book contains the proceedings of a conference on Polymer
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FiG. 11. Plots of Mf(M) vs M for a trimodal blend of polystyrene. The upper

curve was obtained from sedimentation velocity experiments using g °(so); the

lower curve was obtained from sedimentation equilibrium experiments using

Scholte’s linear programming method (20). Values of M,, M., and M, for this
sample obtained by various methods are listed in Table 2.
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L 3
TABLE 2
Average Molecular Weights of a Blend of Three Polystyrene Samples
How obtained M, x 103 M, x 103 M, x 103
1. From average molecular 102 204 385
weights of the original
samples
2. From sedimentation 106 202 362

equilibrium experiments
by Scholte’s method (Eg. 59)
using linear programming

3. From sedimentation 101 205 365
velocity experiments [g(s)]

4. From gel permeation 96 204 439
chromatography

Molecular Weight Methods; about one-third of the papers in the book
deal with gel permeation chromatography. We have seen in Fig. 7 that
there is good agreement with the MWD of the dextran sample determined
from sedimentation equilibrium experiments (43, 44) and by a combina-
tion of analytical gel chromatography and light scattering. The details of
the manufacturer’s method for obtaining the MWD of the dextran sample
are given in the papers by Granath (64, 65). We have also seen in Table 2
that there is good agreement between ultracentrifugal methods for obtain-
ing MWDs and gel permeation chromatography. The agreement between
the various methods is gratifying.

The ultracentrifuge has been used for the characterization of latex
particles (66, 67). Electron microscopy established that the particles were
spherical. The latex particles are large compared to the wavelength of the
blue (1 = 456 nm) or the green (A = 546 nm) lines of mercury, so that the
particles undergo Mie scattering. Thus a photoelectric scanner could be
used to obtain sedimentation coefficients, s, and g°(s,), thediffere ntial
distribution of sedimentation coefficients. From the Stokes-Einstein rela-
tion s could be related to x?, the square of the radius of the particles;
hence, a distribution of radii could also be obtained. Here is a beautiful
example of a practical application of the ultracentrifuge, since it could
be used for quality control.

Wales and Rehfeld (55) have related the intrinsic viscosity, [5], and
g °(so) for linear polymers. Their procedure has been used by Merle and
Sarko (56) and by Bluhm and Sarko (57) to obtain a polydispersity index,
i.e., a ratio of M /M, in addition to g(s,) for some synthetic, linear,
sterco-regular polysaccharides.
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Automatic plate readers have been developed for reading Rayleigh
fringes (58). Modulatable lasers are available now; in fact we are using
them ourselves. Multihole rotors (4 to 6 holes) are also available so that 3
to S sedimentation velocity or 3 to 15 sedimentation equilibrium experi-
ments (3 to 5 for a sector-shaped centerpiece or 9 to 15 for a multichannel
equilibrium centerpiece) can be performed in the same time it takes to
perform one experiment. An interferometric optical system which gives
refractive index gradients as a family of fringes has been developed by
Bryngdahl and Ljunggren (68); it is used on the Christ Omega II ultra-
centrifuge. The patterns produced by this optical system (68), the Rayleigh
optical system, and perhaps the schlieren optical system could be analyzed
with automatic plate readers. The output from the plate reader could be
fed into a computer. Thus the tediousness associated can be removed.
Ultracentrifugal analysis for heterogeneity, homogeneity, or MWDs
should have an interesting future.

SELF-ASSOCIATIONS

Introduction
Chemical equilibria of the type

nPiLe2 P, n=23... (114)
nqu"—’qP2+mP3+--- (115)

and related equilibria involving a solute P are known as self-associations.
These reactions are widely encountered. Among materials that undergo
self-association are many proteins (30-32, 35, 40), soaps and detergents
(69-72), purine (33, 73), and nucleosides and nucleotides (33, 74, 75) as
well as some polymers (76). The existence of self-associations was re-
cognized early in the development of the ultracentrifuge (3). The first
theoretical treatment of self-associations by sedimentation equilibrium
was by Tiselius (77); no methods for analyzing self-associations were pre-
sented in his paper. The next development was by Debye who showed how
the micellar aggregation of soaps and detergents could be studied by light
scattering (69); this treatment can be applied to sedimentation equilibrium
experiments. Steiner developed a very elegant method for analyzing self-
associations by light scattering (78) or by osmotic pressure (79). Some of
his procedures were applied to the Archibald method (an ultracentrifugal
technique related to sedimentation equilibrium experiments) by Rao and
Kegeles (80) and were used by them to study the self-association of a-
chymotrypsin in phosphate buffer.
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Up to this point the analysis. of self-associations was restricted to ideal,
dilute solutions. Adams and Fujita (81) first showed how to analyze a
nonideal self-association; their treatment was restricted to a monomer-
dimer association. Adams and Williams (82) extended the analysis to
monomer—n-mer associations beyond dimer (n > 3); they introduced the
apparent weight fraction of monomer, f£,, into the analysis. Subsequently
Adams (29) discovered an interrelation between the number- (M, ) and
weight- (M,,.) average molecular weights (or their apparent values in
nonideal solutions). He showed how other self-associations besides
monomer-x-mer associations could be analyzed. Since then new improve-
ments in the method of analyzing self-associations have been developed.
Chun et al. (34) introduced a graphical procedure for studying nonideal
monomer-n-mer and indefinite self-associations; their method makes the
analysis much neater and simpler. Another method for analyzing self-
associations was developed by Derechin (83, 84) who used the multi-
nomial theorem. More recently Solc and Elias (85) have studied the theory
for heterogeneous self-associations; this is an area still in its infancy.

In the study of self-associations one is often dealing with multicompo-
nent systems. With an associating protein one may need a buffer to control
the pH, plus some supporting electrolytes, such as NaCl or KCl, to swamp
out charge effects. Thus one has three or more components—the associat-
ing solute, the supporting electrolyte, water, and sometimes buffers. Vrij
and Overbeek (86) and also Casassa and Eisenberg (87) showed that if a
solution containing an ionizable, macromolecular solute was dialyzed
against a solution containing supporting electrolyte and/or buffers, then
the sedimentation equilibrium, light-scattering, or osmotic pressure equa-
tions reduce to a form that is formally identical to the equations for a two-
component system. Heretofore most studies on ionizable, self-associating
solutes have been restricted to larger molecules such as proteins, but the
recent development of hollow fiber dialyzers with a low molecular weight
cut-off (200 Daltons) now allows the study of small, ionizable solutes. In
this section the equations for a two-component system will be used. The
equilibrium constant(s), K;, the second virial coefficient, BM, the partial
specific volume, 7, and the refractive index increment, ¥, refer to constitu-
ents defined by the Vrij-Overbeek (86) or Casassa-Eisenberg (87) conven-
tions.

Conditions for Simultaneous Chemical and Sedimentation Equilib-
rium

At constant temperature the condition for chemical equilibrium for
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reactions described by Eqgs. (114) and (115) is (30, 81)
npy = Up, n=2173,... (116)

Here u; (i = 1, 2, ...)is the molar chemical potential of associating species
i. The condition for sedimentation equilibrium requires that the total
potential, i;, for each constituent be constant everywhere in the cell. f; is
defined by Eq. (1). For self-associations one notes that

M, = 2M, (117
M3 = 3M1

or
Mj=le

Using Eqgs. (1), (116), and (117), it can be shown for self-associating solutes
that

nji, = ji, = constant (118)

at sedimentation equilibrium (n = 2, 3,...). This means that the total
molar potential of constituent i has the same relation that the chemical
potential has when self-association is present.

Assumptions Required for the Analysis of Self-Associations

In order to analyze self-associations it is necessary to make the following
assumptions (29-35, 81): (a) The partial specific volumes, o, of all the
associating solutes are the same, or the density increments, (0p/dc),, are
the same for all associating solutes. (b) The refractive index increments,
¥, of the associating species are equal. (c) The natural logarithm of the
activity coefficient, y;, on the c-scale (grams/liter) can be represented by

h‘l y: = I'BMIC, i= 2, 3, . (119)

Here B is a constant that is characteristic of the solute-solvent mixture;
BM, is known as the second virial coefficient. It has been shown in light-
scattering experiments on mercaptalbumin and its mercury dimer that Eq.
(119) is valid (88). Furthermore, in his study of the self-association of
organic dyes, Braswell (89) pointed out that in its limiting form the Debye-
Hiickel theory indicates that the mean ionic activity coefficients have a
similar relation, i.e.,

7 +(dimer) = y,*(monomer) (120)

Another reason for using Eq. (119) is that it makes the analysis easier,
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since K; and BM, can be evaluated from experimentally available data.
If the y and 7 or (0p/dc), differ for each constituent, then one does not
obtain M, and the analysis becomes more formidable.

As a consequence of Eq. (119), the concentration of species n can be
expressed as (29-35, 81)

¢, = K,¢/" (121)
and the total concentration, ¢, of the associating solute is given by
c=c1 +K2612 + e +chll + L. (122)

The second virial coefficient, BM,, does appear in the expressions for the
apparent average molecular weights and for the apparent weight fraction
of monomer.

It has been shown that one cannot use M,, .., (see Eq. 45) in the analysis
of self-associations; instead the quantity M., (see Eq. 30) must be used.
Adams and Fujita (87) showed that M, or its apparent value, M,, ,,,,
are functions of the total solute concentration, ¢, for self-associations.
Thus the symbols M, and M,,, will be used in place of M, and M, ,,.;
the subscript ¢ will indicate that we are dealing with a self-association. For
self-associating solutes the basic sedimentation equilibrium equation be-
comes (29-35, 81)

g?l:l—z; = AM,, = (-I—%%,C_cs (123)
Here
A = (1 — 5p)w*/2RT (124)
or
A = 1000(dp/dc),w*2RT (125)
and
AAZ: = ;f: + BMc (126)

For an ideal, dilute solution, BM; = 0and M, = M,,..

In order to analyze self-associations it is necessary to do experiments
with a series of solutions of different initial concentrations, ¢,. Sedimenta-
tion equilibrium experiments are performed on each solution, and for each
solution one can obtain values of M, vs ¢ (¢ = ¢,). These values of M,
vs ¢ for each experiment are pieced together to make a plot of M, vs ¢
as shown in Fig. 12. Here the different symbols indicate results obtained
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FiG. 12. Self-association of f-lactoglobulin C in glycine buffers at 10°C. Both

buffers had 0.2 M glycine and 0.1 M HCI (pH 2.46 at 23.5°C). The second buffer

had 0.1 M KCl in addition so that its ionic strength was 0.2. In both cases

nonideal behavior is observed, and a monomer-dimer association appears to

be present (104). At 25°C, J = 3.394c¢ for ¢ in g/l (1 = 632.8 nm; 12 mm
centerpiece).

with solutions of different initial concentrations; remember that M, =
[f(c) for self-associations. A smooth curve is drawn through the M, vs ¢
plot, and the plot is extrapolated to M, the monomer molecular weight.
In principle one should be able to extrapolate values of M, or M, (1 —
Up) to zero concentration so that the correct value of M, or M,(1 — 0p,)
required by the Vrij-Overbeek (86) or Casassa-Eisenberg (87) conventions
is obtained. In actual practice one is forced to choose a value of M, from
amino acid analysis or some other method, since with strong associations
the plots of M, vs ¢ or 1/M,, vs ¢ become quite steep in the vicinity of
zero concentration.

Relation Between M, M,,, and In f,. Applicability to Light Scatter-
ing and Osmometry

From the smooth plot of M,, vs ¢ a plot of M,/M,, vs ¢ can be con-
structed. A minimum in this plot (or a maximum in the plot of M,,, vs ¢)
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FiG. 13. Self-association of g-lactoglobulins A (— ) and C(——) in 0.2 M
glycine buffer (pH 2.46 at 23.5°C; ionic strength 0.1). Note the temperature
effect on the self-association. Also note that B-lactoglobulin C undergoes a
stronger monomer-dimer self-association than does the A variant. Both proteins
exhibit nonideal behavior under these solution conditions. These genetic
variants differ by three amino acids. The concentrations are given in red fringes
(12 mm centerpieces; 4 = 632.8 nm); at 25°C, J = 3.394¢ for ¢ in g/l (35, 104).

is indicative that a nonideal self-association is present. Figure 13 shows
such a plot. From plots of M,/M,,, vs ¢ one can obtain M,, (29, 30), the
apparent number-average molecular weight, and In £, (30, 82), the natural
logarithm of the apparent weight fraction of monomer. The quantity

M,/M,, is obtained from

dc

M, ¢

=2\ .
where
My M, BMic
M, M, 2

The quantity In £, is obtained from
(M, dc
lnf;_j“)(Mwa—l)?

Inf,=Inf, + BM,c

where

(127)

(128)

(129)

(130)
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and
fi = ¢fe (131)

is the weight fraction of monomer. Note that the

. (M,
1‘33<Mm, - 1)/ ¢

exists, so that the lower limit of the integral is zero. If dimer is present,
the limit is — K, + BM,, and if dimer is absent the limit is BM,. Since
M., can be obtained from light-scattering experiments, it follows that one
can also obtain M,, and In f, from light-scattering experiments provided
one has done enough experiments to obtain a plot of M, vs c. Each value
of M, corresponds to one light scattering or one osmotic pressure experi-
ment. So it is evident that one can obtain far more information from a
series of sedimentation equilibrium experiments on a few solutions; for
instance, five or more different initial concentrations were required to
obtain the data shown in Fig. 12 and 13. Since M,, can be obtained from
osmotic pressure experiments, one can construct a plot of M,, vs ¢ if
several experiments are performed. With this information M,, and In f
can be obtained since (90)

M.~ dc(Mn) ~ o, Ca\u, (132)
and because of Eq. (132)
(Mo e, (M,
na=f G- )T Ge-) o

It should be apparent that if a physical method gives an average molecular
weight or its apparent value at various concentrations for a self-associating
solute, then it is potentially possible to analyze the self-association by the
methods described here.

It is possible to eliminate the second virial coefficient, BM,, by various
combinations of M,/M,,, M,/M,,, and In f,; the resulting equations are
particularly useful for the analysis of monomer-»#-mer and indefinite self-
associations. Equations (126) and (128) can be combined to give (34, 35)

=, "M, M, M. (134)
Similarly, Eqs. (126) and (130) can be combined to give
M M
L—Inf, ==+ - Inf, (135)

=M, M,,
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Equations (128) and (130) can be combined to give

M, _2M,
=3ty (136)

ne

V=

These relations were developed by Chun et al. (34). The first two relations
are most useful in sedimentation equilibrium experiments (35). The third
relation is most useful in osmotic pressure experiments. Note that BM
has been eliminated in Eqgs. (134)~(136), and that the quantities &, n, and
v have the same values they would have under ideal conditions.

Analysis of a Monomer-n-Mer Association

The association being considered is described by Eq. (114). For this
association one notes that the following relations apply (34, 35, 91):

¢ =c + K,¢\" 137)
L=fi +/, or fi=1-f; (138)
fo = Kee)"fc = KUy (139)

The quantities M,/M,. and M,/M . are defined as

M, 1 K"
M, c\% T

fi_l+fin=1

=fi +2 , (140)
and
M, c 1
M, ¢ +nKce” n+fi(l —n (141)
so that
M M, _2-20 -7 !
ST M. ML e (s B

Equation (142) is quadratic in f,, hence f, is given by

£, = Z(Ti_l? {(,, - 1)(5 +2 - %) - ([(n - 1)(5 +2 _%):lz
= (D)o~ v7een - 1))”2} (143)

Thus once f, is known, it is a simple matter to use Eqgs. (138) and (139) to
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obtain K, since
1~ f .
—fT—l = K(cf1)! (144)
A plot of (1 — f,)/f1 vs (cf1)"~* has a slope equal to K,. Once f; is known,
M,/M,,. is known (see Eq. 141), so that Eq. (126) can be rewritten as
M, 1
—M;: n——————-+f1(l — n) = BMIC (145)
A plot of
Mo 1
Mwa n +fl(1 - n) ¢
has a slope of BM . So far it has been assumed 7 is known, If n is unknown,
then one must assume values of # (n = 2, 3, etc.) and solve for f, X,, and
BM , for each choice. The correct choice will give straight line plots which
pass through or close to origin. Figure 14 shows an example of a test for

3

(1-1)/ 14
L)
o

0 L i L !
0] 01 02 03 04 05

™ (gan”?

Fi1G. 14a. Test for a monomer-n-mer self-association using n = 2 and n = 3.
B-Lactoglobulins A and C in 0.2 M glycine buffer (0.1 tonic strength, pH 2.46 at
23.5°C). Results at 11°C with g-lactoglobulin A. K, = 9.58 dl/g (35). Values
of f, used here were calculated from & (see Eq. 142). The plots for n = 2 come
closest to describing a straight line that passes close to the origin; this indicates
the presence of a monomer-dimer association. Attempts to analyze these as-
sociations as a monomer-n-mer association with n > 3 were unsuccessful,
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Fi1G. 14b. Same as Fig. 14a, but these results are at 10°C with g-lactoglobulin
C. K; = 27.2 dl/g (104).

a monomer-n-mer association; note that the plot for n = 2 gives straight
lines which come closest to satisfying plots based on Eqs. (144) and (145).
It is also possible to use n (see Eq. 135) to try to analyze a monomer—n-
mer association; for this case

M, 1
ﬂ—Mwn—lnf;—m—lnfl (146)
This equation has one unknown, f;, which is solved for by successive ap-
proximations; remember that 0 < f; < 1. A plot based on Eq. (144)
using values of f, obtained from Eq. (146) is also shown in Fig. 15. For
the sedimentation equilibrium experiment it has been shown that the
quantity ¢ (see Eq. 142) is the least affected by experimental error of the
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Fic. 15. Self-association of f-lactoglobulin A at 11°C in 0.2 M glycine buffer
(ionic strength 0.1, pH 2.46 at 23.5°C). Test for the presence of a monomer~—
dimer association using values of f; calculated from » (see Eq. 146). From the
slope of the best straight line through this plot, a value of K, = 6.56 dl/g was
obtained. Note the difference in this value and the one obtained in Fig. 14a.
The plot based on Eq. (142) has been shown to be more reliable (35).

three quantities, &, #, and v. On the other hand both ¢ and 7, being func-
tions of f; only, can be used to set up standard plots of ¢ vs 5 for various
choices of n. This means experimental values of ¢ and 5 could be calculated,
and these calculated values could be compared to a standard table or plot
of £ vs 7 to see if a monomer-n-mer association is present. Figure 16 shows
such a standard plot for a few values of n.

Analysis of Indefinite Self-Associations

A sequential indefinite self-association is described by Eq. (115). Here
the association appears to continue without limit. For ideal, dilute solu-
tions or for nonideal solutions for which Eq. (122) applies, one can repre-
sent an indefinite self-association as being made up of simultaneous
associations of the type (30, 32, 33, 76)

Py + P2 Py, Ky, = [P,)/[P\}
Py + P, & Py, K,3 = [P5)/[P,])[P,] (147)
P + P2 P, Ky = [P,)/[P,][P5]
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F1G. 16. Standard plots of n (sec Eqs. 142 and 161) vs { (see Eqgs. 146 and 162)

for a monomer—dimer (1-2), a monomer-trimer (1-3), a monomer-tetramer

(1-4), and a sequential, indefinite (INDEF) self-association. For these associa-

tions »# and ¢ are each functions of f; (0 < f; < 1); thus, for each model, one

can assume values of f; and construct standard curves which can be used to test
for the type of self-association that might be present (34).

and so on. Here [P] represents the molar concentration of species i (i =
1, 2,...), and K;; represents the molar equilibrium constant. The Egs.
(147) can be rearranged to give

[P2] = K12[P1]2
[P3] = K, Ky5[P, (148)
[P.] = Ky3K23K34[P)

and so on. In order to analyze an indefinite self-association, one must
make some assumptions regarding the molar equilibrium constants, the
K;;; otherwise, the analysis becomes formidable. For a sequential indefi-
nite self-association (an association in which all species appear to be pre-
sent), one can assume that all molar equilibrium constants are equal, i.e.,
assurhe

Ki2=K;3=Kyy=--=K (149)
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Now convert cogcentrations to the gram/milliliter scale, C;; thus we obtain

1000K
Cz = 2( Ml )Clz = ZkClz

2
C; = 3(——-—) C? = 3k*¢c,? (150)

and so on. The total concentration of the associating solute becomes
C=C, +2kC? + 3k*C® + 4K3C,* + - --
= C,(1 + 2kC, + 3K*C,%2 + 4k3C3 + ---)
= C,/(1 — kC,)?, ifkC, < 1 (151)
Under these circumstances Eq. (119) becomes
Iny, = iBM,C= iBM,c (119a)

Since C = ¢/1000, then BM, = 1000BM,. Note that M,/M,, can be
written as ‘
M, M,
Mwa MWC
Now M,/M,, is the same whether the gramy/liter or the gram/milliliter

concentration scale is used; this follows from Eq. (123) since d In ¢ =
d In C. Thus it follows that

BM,C = BM,c (153)
The number-average molecular weight, M, , is defined as
s M, = Zi"tMi/‘Z ng = W/'Z wi/M,
This definition can be recast as

Mm: = C/; (Ci/Mz)

+ BM,C (152)

It follows that

M o Z M,
For a self-associating system M2 = 2M,, My = 3M,, etc., so that
CM C
~r M1 2 1‘

= Cl + kCl + k2C13 + k3Cl4 + v
=G, /(1 - kC), ifkC, <1 (154)
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Division of Eq. (154) by Eq. (151) leads to

MM, =1-kC, (155)
Similarly it can be shown that
Ml _ 1 - kCl
M, 1+kC, (156)

The expressions for M,/M,. and for M,/M,,. are formally the same as
those obtained by Flory (92) for linear condensation polymerization.
Flory obtained My/M, =1 —p and My/M, = (1 — p)/(1 + p); here
M, is the molecular weight of the repeating unit and p(0 < p < 1) is the
extent of polymerization.

Equation (151) can be rearranged to give

Ci/C=f, = (1 — kC,)? (157)
from which it follows that
JAi=1-kC, =1 - kCf, (158)
or
(1 = VP = kC (1582)

Once \/Z or f, has been obtained, one can use Eq. (158a) to obtain k,
since a plot of (1 — \/f)/f; vs C would be a straight line passing through
the origin and having a slope of k. Equation (158) could also be used for
this purpose. Experimental error may cause the plot not to go through
the origin, but the plot should come close to it. We can use Egs. (152),
(156), and (158) to show that

M] l—kcl

M.~ Tikc, t BMC

—\7—\/1’ Ly BM,C (159)

Similarly, M,/M,, can be expressed as

M, BM,C
M, = 1 - kC, +—

BM,
=Jh +

For an indefinite self-association the quantities ¢ and #n (see Eqs. 134 and

(160)
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135) are given by

R (161)
and
n = E——% —Inf, (162)
Equation (161) is quadratic in \/7;, and \/7; is obtained from
U = & +3) - JETIF - 16 (163

One obt_ains Sy or \/f—, in Eq. (162) by successive approximations. Once
fi or /fi is known, k can be obtained from plots based on Eq. (158) or
(158a). The second virial coefficient BM, is obtained from Eq. (161) since

wa

M __Jh
Y T BM,C (164)
A plot of

{M /L }

Mwa - \/fl

vs C will have a slope of BM,. This plot should go through the origin, but
experimental error may cause it to miss the origin slightly. Figure 17
shows plots based on Eqs. (158a) and (160).

The indefinite self-association considered above is one for which all
molar equilibrium constants are equal, and it also implies that the standard
Gibbs free energy for the addition of monomer (or unimer) to an aggregate
of any size, including monomer, is the same. Now suppose that only the
standard Gibbs free energy for the dimerization is different from the
standard Gibbs free energy for formation of higher aggregates. This
would mean that in Eqs. (147) and (148), K;, # K,i, K34, etc., but that

K,; = Ky, = ... = K. In this case it can be shown that (93)
_ k12C1(2 - kcl)
C= Cl[l + (0 —kC? (165)
if kC; < 1. Here
klz = IOOOK”/MI (166)

and
k = 1000K/M, (167)
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Fi1G. 17a. Test for a sequential, indefinite self-association. Self-association of f-

lactoglobulin A at 16°C in 0.2 M acetate buffer (ionic strength 0.1, pH 4.61

at 22.5°C). Using the data of Adams and Lewis (32), f, was calculated from &

(see Eq. 161) and used for the evaluation of & and BM,. Evaluation of k from

a plot based on Eq. (158). By another method Adams and Lewis obtained k = 400

ml/g and BM, = 1.6 ml/g. Note the amazing effect of the solution conditions
(see Fig. 14) on the self-association of the f-lactoglobulin A.

Similarly, it can be shown that

[1 4 ke ko))

M, 7 (1 — kC,)?
Mo [ G 9, F ] (69
= kC)l
and that
[ k12C, :|
14 2
M, _ T —kCpl (169)

My~ T, kCi@ = kC)
T kG,

The quantity & (see Egs. 134 and 135) would involve two unknowns,
x = k,,C and y = kC,, and it would be awkward to solve for these
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Fic. 17b. Evaluation of BM, from a plot based on Eq. (160). See the legend of
Fig. 17a.

unknowns. One would have to try to evaluate x and y at concentration
¢ by Monte Carlo methods or by other numerical methods (94). It appears
one can actually use Egs. (165), (168), and (169) to obtain one equation
in one unknown (BM,), but the procedure for doing it is complicated and
must be tested thoroughly.

Other Types of Indefinite Self-Associations

Suppose no trimer, pentamer, heptamer, etc. were present. Two types
of self-associations arise: one in which all molar equilibrium constants
are equal, and one for which K, differs from all other molar equilibrium
constants. If all molar equilibrium constants are equal then one obtains
(93)

C =C, + 2kC,? + 4k3C,* + 6k°C,% + - ..
= C\[l + 2kC,{1 + 2k*C\* + 3k*C,* + ---}]

szl .
= Cl[l + '(-1—_—’(2—6-1-251], ifkC, <1 (170)
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Similarly, one notes that ¢ (see Eq. 134) becomes

kC 2%C,
‘e 2[1 = k;C,Z):I B [1 ta= kzclz)z]

| 2kC, ) 4kC,(1 + szlz)
t =Ry T SR

This equation has only one unknown, kC,. Since 0 < kC, < 1, one solves
for kC, by successive approximations. Once kC, is known, it is an easy
matter to obtain C, from Eq. (170). Now let X = kC,; a plot of X vs C,
will have a slope of k. Here k = (1000K/M,) is the intrinsic equilibrium
constant.

Now suppose that K,, # K,4, K, etc., but that K, = Kyg = -+ =
K. Letting k,, = 1000K,,/M, and k = 1000K/M,, the expression for the
total concentration of the associating solute is (95)

2k,,C
C=C/|1+ ——12——1'—{7]
l[ (1 — kk,,C,*)

(171)

2x
= c,[l t T ] (172)

Here y = kC, and x = k,,C,. Note that 0 < x < 1 and 0 < y < I. For
this association the expressions for M,/M,.and M,/M,,. become

X
M, I:l + 1 - x.v)] (173)

M, 2x
[‘ ta= xy)Z]

. 2x :|
M, [*(1— 2

and

_ xy)
M, [l 4x(1 + xy)] (174)
(1 - xy)°

The expression for ¢ (see Eq. 134) would have two unknowns x and y,
which would have to be solved at every point (at every value of & that was
used). We would have to use methods similar to those used with the
sequential indefinite self-association for which k;, # k. Some recent
developments in our laboratory indicate that we can use Egs. (172) and
(173) to obtain an equation in one unknown, BM,. We are currently
evaluating and testing this idea. ’
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Indefinite self-associations may be important in the self-assembly of
virus coat protein subunits. One could have a linear or helical association
of subunits, and equations that are similar to those used here have been
developed for these situations. For more details the reader should consult
the papers by Chun (96). Pekar and Frank (97) have studied the self-
association of insulin near neutral pH; at pH 7.4 they believe that the self-
association can be described by

nPlﬁqP2+hP6+jP12+mP13+--- (175)

In other words, the higher aggregates are multiples of the hexamer. For
bovine insulin A the monomer molecular weight is M, = 5733 (98).

The Monomer-Dimer-Trimer and Related Self-Associations

A monomer—dimer-trimer association is described by (29, 30)

nP, 2 gP, + mP, (176)
When Eq. (119) applies, the following relations obtain.
c = Cl =+ chlz + K3013 (177)
cM, K,c,? | Kse®  BM,c?
= 178
M..,c‘+2+3+2 (178)
! = Maue _ o4 2Kse,? + 3Kae,? (179)
Ml - BM Ml '
cM,, !
and
Inf,=Inf, + BM,c ) (180)
or
o = cf, = ¢, exp(BM,c) (181)
We can combine Egs. (177-179) and (181) to obtain (29, 30)
SM _ se = 2¢, + 3BM,c* — 1
M,, M, BM
cM,, !
= 2a exp(~BM,c) + 3BM c* — 7] 1 (182)
_1 -— BMl

cM,,
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This equation contains only one unknown, BM, which can be solved for
by successive approximations. Alternatively Eq. (182) can be recast as

M, _s- 2f, exp(—BM c) + 3BMc — R N (183)

Mrm Ml —BMlc

wa

The only unknown here is BM,. This can be solved for by successive
approximation. Instead of solving Eq. (182) or (183) point by point, one
could set up an array of equations from several (20 to 30 or more) data
points, and use a Monte Carlo procedure to find the best BM, as measured
by the sum of the square of the error or by the sum of the absolute value
of the error (99). Here the error ¢ would be defined as

(559
M. ) _, (184)

<6M 1 5)
Mna obs

A(6M1 - 5) = (% - 5> - (6M‘ - 5) (184a)
Mna Mna cale Mna obs

Sometimes with very strong self-associations, the plot of [(M/M,,) —
1)/c vs ¢, which is required for the evaluation of In f; (see Eq. 129), may be
quite steep in the low concentration region. Figure 18 shows such a plot
for a simulated monomer—dimer—trimer association; the intercept at ¢ = 0
is —K, + BM,. The greatest contribution to the integral required for

Inf,
M, de
I“f“”jo(Mw”)‘c‘

comes from the region of lowest solute concentration. This is the area
where the experimental error may be the worst; and this may cause
problems in the application of Eqs. (183) and (184). One way to avoid
this is to calculate In f,/f,s, where

Inf/fo = [ G;‘ - 1) de (185)

and
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FiG. 18. Plot required for the evaluation of In f, (see Eq. 129). Here a simulated

monomer—dimer-trimer association was used; K; = 0.65 dl/g, K; = 0.5 dl/g,

and BM, = 0.2 dl/g. The intercept of this plot is — K, + BM, = —0.45. The

actual shape of this curve depends on the values of the K, and the BM,; with

stronger self-associations this plot becomes much steeper in the vicinity of
c=0.

Here c¢* is a low concentration; the choice is arbitrary. What we want to
do is get rid of the troublesome part of the [(M,/M,,) — 1}/c vs c plot.
We can then recast Eq. (183) as

My 54 3BMc——t
Mna Ml
— BM,c
S Moo (186)
fie [6M, 1
- 5+3BM;¢* — ————————
n L — BM,c*

Multiplication of both sides of this equation by exp[BM,(c — c¢*)] leads
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to (99)
fo _ N
=2 = ——exp[BM (c — c*
.fa‘ fl‘ p[ 1( )]
oM, _ 5+ 3BMc — Tz{l—— exp[BM ,(c — ¢*)
na Ml . BMlc
T, wa i (187)
L5 +3BM¢* — ——
na® ” L — BMc*

wa*

Here one can set up an array of data points and use a Monte Carlo
procedure to find the best value of BM, to fit the array. We did this with
the self-association of adenosine-5'-triphosphate (ATP) in isotonic saline,
and showed that a monomer—dimer-trimer self-association gave the best
description of the observed self-association. Figure 19 shows a plot of

1.0
08 NAD
© 06
3
2
- ATP
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02F
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FiG. 19. Self-association of small, ionizable molecules. These plots of M,/M,,,
vs J give a comparison of the self-association of two nucleotides, Adenosine-5'-
triphosphate (ATP) and Nicotine adenine dinucleotide (NAD), in isotonic saline
at 20°C. These solutions were dialyzed in a hollow fiber dialyzer with a 200
Dalton cutoff, It is evident that ATP associates more strongly than the NAD.
ATP undergoes a monomer-dimer-trimer association (99). Experiments are still
underway with NAD; preliminary results suggest a sequential, indefinite self-
association may be present.
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M,/M,, vs c at 10°C for ATP in isotonic saline; on the same plot we have
also shown some preliminary results with the self-association of NAD
(nicotine adenine dinucleotide) in isotonic saline. The self-association for
ATP (99) is stronger than that for NAD (100), purine and cytidine (33,
73), or that observed with various nucleosides (74, 75).

Equations analogous to Eq. (182) or (183) can be developed for other
related self-associations, such as a monomer—dimer—tetramer. For this
association, the analog of Eq. (183) is

M =3¢, + 4BMe— (188)
na ! — BM,c

wa

Other Self-Associations

Teller (101) has considered the case of discrete self-associations in which
the equilibrium constants are equal. Solc and Elias (85) have given a very
detailed treatment of a self-association involving a heterogeneous unimer
(monomer). The discussion in this paper so far has been restricted to self-
associations involving a homogeneous unimer (or monomer). Solc and
Elias (85) have given a very elegant treatment of a more complicated case.
Their paper is the opening wedge in a vast area.

Factors Influencing Self-Associations

With a self-associating solute one can only add the solute itself to the
solution; the subsequent self-association equilibrium that sets in depends
on various factors such as temperature, pH, ionic strength, and the
presence or absence of other additives or ions. Various types of chemical
interactions may be involved. For example, with soaps and detergents in
aqueous solution, hydrophobic interactions are involved. These associa-
tions can be influenced by the position of the polar group for polar
detergents as well as by the ionic strength of the medium (69-72). With
purine, cytidine, and various nucleosides, it is believed that base stacking
is an important factor (33, 73-75). Ts’o (75) was able to prepare a chemi-
cally modified nucleoside in which no hydrogen bonds could be formed,
yet it associated very strongly in aqueous solution. This association was
attributed to base stacking (75). Recently we have done some studies on
the temperature-dependent self-association of the disodium salt of
adenosine-5'-triphosphate (ATP) dissolved in and dialyzed against isotonic
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saline (0.154 M NaCl); the availability of a hollow fiber dialyzer with a
low molecular weight cutoff made these studies possible (99). Our
results jndicated that ATP underwent a monomer-dimer-trimer self-
association; the association was greater at lower temperatures. Further-
more the molar assocjation equilibrium constant for the dimerization was
greater than that observed by others for purine, cytidine, or various
nucleosides. One would think that the triphosphate group, since it ionizes,
would inhibit self-association; yet our results indicated a much stronger
self-association.

With proteins metal ions are sometimes involved. Kakiuchi (102) showed
that Zn?* is needed for the self-association of an anylase obtained from
B. subtilis. Electrostatic repulsions and attractions are involved in the
self-association of the f-lactoglobulins at low pH (pH 2 to 3). An increase
of salt increases the degree of aggregation; Types A, B, and C show a
monomer-dimer association under these conditions (31, 35, 91, 103-105).
In the pH range 4 to 5.7 the association behavior is quite different. -
Lactoglobulin A shows a very strong, temperature-dependent self-
association which has been characterized as an indefinite (32, 93) or as a
dimer-octamer (105, 106). Sedimentation equilibrium experiments on three
different batches of ff-lactoglobulin A in acetate buffer at pH 4.7 and ionic
strengths varying from 0.1 to 0.16 have shown that the 18,422 Dalton
monomer unit is present and would be the limiting species in the vicinity
of zero protein concentration. Experiments carried out using a photo-
electric scanner have indicated apparent weight average (M,,,) molecular
weights as low as 21,000 at very low concentrations, and the trend of
these M,, would go to the 18,422 unit. The genetic variants S-lacto-
globulins B and C do not associate as strongly. McKenzie (/107) maintains
that —COOH groups are involved in the strong self-associations of g-
lactoglobulin A in the pH range 4 to 5.7; he diminished the self-association
by chemically modifying the —COOQOH group. The self-association of three
genetic variants of o, -casein were studied by Schmidt (108); two of the
variants showed similar behavior, whereas the other one differed. The
effect of various ions, presumably by ion binding, on the self-association
of apoferritin has been shown by light-scattering experiments carried out
on the apoferritin in different buffer solutions (109). Chymotrypsinogen
associates only at low ionic strengths (710, 111) whereas chymotrypsin
associates at higher ionic strength (80). The addition of diisopropyl fluoro-
phosphate (DIP) to chymotrypsin stops the enzymatic activity, but it does
not stop the self-association (38). Eisenberg and his associates (112, 113)
have shown that bovine lactate dehydrogenase associates; Chun et al.
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(114) have shown that this association is a sequential indefinite self-
association. It was shown by Eisenberg and his associates (/13) that a
small amount of diethyl stilbesterol inhibited the self-association; this
indicates the presence of hydrophobic bonds. Furthermore they were able
to cross-link the associating species and still show some biological activity
which indicated that the association and active sites were in different
locations.

Clearly from this discussion it is apparent that various forces are
involved in self-association, and that genetic variation can also influence
the self-association. A very interesting discussion about the forces involved
in protein associations and methods to test for them is given in the paper
by Timasheft (/15).

Other Methods for Studying Self-Associations
Equilibrium Thermodynamic Methods

Since M,, and M, are interrelated for self-associating solutes, one can
use any technique that will give values of M, or M,, and perform a series
of experiments with several solutions of different concentrations. Then
plots of M,, or M, vs ¢ or M,/M,, or M /M, vs ¢ can be constructed,
and the analysis can be done in the same way that has been described here.
For instance, M,/M,, is obtained from plots of M,/M,, vs c since (see
Eq. 132) (90)

M, d{cM, M,
Mna

d
qu = EE MM = — 4 c%(Ml/Mna) (132)

Similarly one notes that (90)

el () oo

na

The big disadvantage here is that each point on the plots of M, or M,,
vs ¢ corresponds to one solution, so a large amount of material is required.
On the other hand one can cover the same range of M,, or M, vs ¢ in
sedimentation equilibrium experiments with only a few (four or more)
solutions of different initial concentrations.

Two techniques that give M, are elastic light scattering and low-angle
X-ray scattering. Extensive studies on the self-association of the f-lacto-
globulins A and B, using light scattering, have been reported by Timasheff
and Townend and their associates (103, 106). At low pH (pH 2 to 3.5) the
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B-lactoglobulins A and B undergo a monomer-dimer association. These
associations have also been studied by sedimentation equilibrium experi-
ments, and good agreement has been found between the two techniques
(35, 91). M,, can be obtained from high-speed membrane osmometry or
vapor pressure osmometry. The monomer—dimer self-association of
soybean proteinase inhibitor was studied by Harry and Steiner (/16)
using high-speed membrane osmometry. The self-association of purine in
aqueous solutions has been examined by vapor pressure osmometry (75,
117) and by sedimentation equilibrium (33, 73). Excellent agreement has
been obtained by the two methods; both methods indicated the presence
of a sequential indefinite self-association. This association is attributed
to base stacking. Elias (72) has followed the self-association of some non-
ionic detergents by light-scattering, vapor pressure osmometry, and sedi-
mentation equilibrium experiments; the degree of aggregation and the
equilibrium constants obtained by the three methods agreed remarkably
well.

Transport Methods

Gilbert and his associates (/18-121) have proposed a method for
analyzing self-associations from the shape of the moving boundary in a
sedimentation velocity experiment. In order to solve the continuity equa-
tion when self-associations occur, Gilbert (//8) was forced to make four
assumptions: (a) The centrifugal field is constant, (b) the cell has a constant
cross-sectional area, (¢) there is no diffusion in a moving boundary, and
(d) the velocity of the n-mer relative to the monomer is constant. For the
sedimentation velocity experiment the first three assumptions are false;
only the last assumption may be true. The neglect of diffusion was neces-
sary so that the continuity equation could be solved. Only recently with
very sophisticated computational procedures has it been possible to in-
clude diffusion in the continuity equation for self-associations (122, 123)
or' mixed associations (724, 125). Nevertheless, Gilbert’s methods did
stir up quite a bit of interest in the study of self-associations. His theory
indicated the moving boundary should be bimodal for a monomer-n-mer
association when » > 3. However, it has been shown by Fujita (/26) that
one may still encounter unimodal boundaries for a monomer-trimer as-
sociation under some conditions. Cox, who has done some elegant com-
puter simulation studies on self-associations, has shown that unimodal
boundaries can be encountered with monomer-trimer and monomer—
tetramer associations (/22, 123). For a monomer—trimer association
which has M, < 50,000 Daltons, he has shown that diffusion can mask
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the bimodality; the same thing can happen in a monomer-tetramer as-
sociation if M, < 20,000. It has been pointed out that the presence of
dimer in these associations could cause unimodal peaks (122, 123). The
Gilbert method may fail when intermediate species coexist in rapid
equilibrium with a monomer and its highest #n-mer (/27). Although the
molecular weights of the associating species have the same relation M; =
JM, (=2, 3,...), there is no known relation between sedimentation
coefficients of the associating species. If we knew the shape of the species
we might be able to predict the relation between the sedimentation coeffi-
cients of the associating species. Finally, at present no plots comparable
to those based on Eqgs. (134)-(136) are available for sedimentation velocity
experiments; clearly, the sedimentation equilibrium method does have an
advantage.

The Gilbert method has also been applied to moving boundary electro-
phoresis (/28). The application of the Gilbert method to various transport
methods has been discussed by Cann (/25) and also by Nichol, Bethune,
Kegeles, and Hess (128). Winzor and Scheraga (38) have tested the Gilbert
method using gel filtration chromatography. They have shown that deriva-
tives of the elution profiles resemble the schlieren patterns obtained by
electrophoresis or sedimentation velocity. In fact, they claim and do
demonstrate a difference in the derivatives of the elution profiles between
self-associating and noninteracting proteins. From these elution profiles
they can calculate the elution volume, ¥,, which for self-associations ex-
hibits a concentration dependence similar to that exhibited by sedimenta-
tion coefficients of self-associating solutes. With self-associations they
measure an apparent weight-average elution volume, V., ,,,- The con-
centration dependence of the elution volume is quite different for non-
interacting and for self-associating systems. In fact a plot of ¥V, 5, Vs ¢
resembles a plot of 1/s,, vs c¢; here s,, is the apparent weight-average
sedimentation coefficient. The elution volume, V,, is proportional to
molecular weight for a series of polymers (129), and this fact can be used
to estimate molecular weights from gel filtration chromatography. This
method has the advantage of speed and simplicity; and it has also been
applied to a study of the mixed association between lysozyme and ovalbu-
min (/30). More details about this technique will be found in the mono-
graph by Winzor and Nichol (37).

A very beautiful and elegant method for studying chromatography
directly on a column, and especially the chromatographic behavior of
chemically reacting systems, is the scanning method developed by Brum-
baugh and Ackers (130, 131). Quartz columns packed with sephadex are
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used. A high intensity lamp is placed on one side of the column and a
photomultiplier is placed on the other side; the output from the photo-
multiplier is fed to a computer. A motor is used to move the column up or
down so that various levels can be scanned. Even though light scattering
causes a high background absorbance with only buffer and the sephadex
gel, Brumbaugh and Ackers (130, 131) were able to show a linear relation
between protein concentration and absorbance in the absorbance range of
2 to 3. With these experiments the weight-average partition coefhicients,
o,, between the gel phase and the liquid phase can be measured. The
weight-average elution volume, V,,, can also be obtained. An empirical
relation between partition coefficients and molecular weights has been
established (/37). For self-associations both &, and V,,, are functions of
the total concentration of the associating solute, and they can be used to
estimate the equilibrium constant (3). Henn and Ackers (132) have done
very elegant studies of the monomer—dimer self-association of pD-amino
acid oxidase apoenzyme; this association was studied at several tempera-
tures. The van’t Hoff plot of In K, vs 1/T gave a reversed S-shape curve.
This was interpreted to mean that a conformational equilibrium accom-
panied the self-association. With the aid of other physical methods,
optical rotatory dispersion and concentration difference spectra in the
UV region, they were able to calculate the conformational equilibrium
constant.

Chun et al. (1/4) have shown that one can obtain the weight fraction
of monomer, f,, from values of the weight-average partition coefficients,
6, when self-associations are present. They have developed equations
applicable to various types of self-associations. The o,, could also be
related empirically to molecular size. Chun et al. (1/4) have shown that
the self-association of bovine liver L-glutamate dehydrogenase reported
by Eisenberg and Tompkins (//2) was a sequential indefinite self-associa-
tion. Chun et al. (/14) also studied this self-association by analytical gel
chromatography; their plot of o, vs ¢ agreed with the plot predicted for a
linear indefinite self-association.

Godschalk (/33) has developed a very sophisticated, computational
method for determining the translational diffusion coefficients of self-
associating species. The method works best with materials having an ab-
sorption spectrum in the range of 220 to 560 nm, so that a photoelectric
scanner equipped with a data acquisition system can be used to reduce the
tediousness of the calculations. With this method it is possible to evaluate
diffusion coefficients and also to enumerate the number of associating
species, if this is not known a priori.
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In the discussion of the other methods for studying self-associations,
we have not considered what would happen if both thermodynamic
(equilibrium) and transport experiments on the same associating solute
were carried out under identical solution conditions. Would it be possible
to evaluate additional information about the associating solute, such as
the sedimentation coefficients of the associating species? Such experiments
have been performed. Kakiuchi and Williams (/34) have studied the self-
association of a y-G globulin from multiple myeloma; the solvent was
8 M urea, buffered at pH 7.

If we assume that interacting flows are absent in a multicomponent
system, then we can combine the two techniques. This is an assumption
that one is forced to make at present. The apparent weight-average
sedimentation coefficient, s,,,, is defined by (42)

sWC
Swa = T e (Model I) (189)
or by a second model (42)
T _1 g (Modelln (150)

swa SWC

Here s,,., the weight-average sedimentation coefficient, is defined by
e = 25 (1s1)
c
For a monomer—dimer association
s; + Ky,
=1 1 27172 192
= I (192)

The quantity g or g is the hydrodynamic concentration dependence
parameter associated with ordinary sedimentation coefficient measure-
ments on nonassociating solutes. Note that s, is the sedimentation coeffi-
cient of the monomer at infinite dilution, and s, is the sedimentation coeffi-
cient of the dimer. Thus

lims,, = s, (193)
c—0
or
lim 1/s,, = 1/s, (193a)
c—+0

For very strong self-associations it may be difficult to obtain s, from the
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limiting slope of a plot of s,,, or 1/s,, vs ¢; thus one may have to estimate
s, from experiments conducted under nonassociating conditions. It will
have to be assumed that s, does not change with the different solution
conditions. Kakiuchi and Williams (771, 134) pointed out that Eq. (189)
became linear at high solute concentrations so that

LI IR (194)
Swa SZ

If the slope of a plot of 1/s,,, vs c is taken at a very high concentration,
one obtains g/s, as the slope and 1/s, as the intercept of the tangent line
at zero concentration. Clearly this method depends on where one draws
the slope. There are ways to overcome this limitation; we will illustrate it
with the second model (see Eq. 190).

Equation (190) suggests that a plot of 1/s,, vs ¢ behaves somewhat in a
manner described by Fig. 20. The decrease in 1/s,, is due to the self-
association; the quantity g¢ increases linearly with ¢, so that the combina-
tion of the two factors causes a minimum in the plot of 1/s,, vs ¢. This
behavior is similar to that encountered with plots of M /M,, vs ¢ for
nonideal self-associations. The actual shape of plots of 1/s,, vs ¢ depends

07

L

03
0

c{g/dl)

Fic. 20. Sedimentation coefficients of self-associating solutes. Here we used a

simulated monomer—dimer association with s, = 1.75s, s, = 2.85s and K, =

0.35 1/g. The lower curve shows a plot of 1/s,,, vs ¢ for which there is no hydro-

dynamic concentration dependence (g = 0). Model II (Eq. 190) for describing

Swa Was used here. The upper curve shows the effect of the hydrodynamic con-

centration dependence parameter (g = 0.008 1/g). Note the resemblance of these
curves to plots of M,/M,, for self-associating solutes.
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on the values of K, 5, 5;, and g. The similarity of the plot of 1/s,, vs ¢
and M,/M,,, vs c suggests that we try to develop equations that eliminate
the gc term, so that the resulting equation only contains one or more
unknowns (s,, etc.). One way to eliminate g is to note that

L_EjZ@:_L_EYE (195)

Svwa CJ0oSwa Swe €J0oSywe

For a monomer-dimer association, Eq. (195) becomes

_L_chﬁ 1+ Kpe, +Zj°<____‘+’(2c' )dc (196)

s clos,, s + Kyeus,  clol\s; + Koy,

wa

Since ¢,, K,, and s, are known, there is only one unknown, s,, which is
evaluated by successive approximations. The easiest way to evaluate
§6(dc/s,,.) is to use a computer; for each choice of s,, the integral has to be
evaluated. Another way to estimate s, is to use the equation

U [ 1 [d(Usu)
S_w,,_c[ T :I_ cI: e ] (197)

SWC

This equation contains only one unknown, s,, which can be evaluated by
successive approximations. Once s, is known then it is possible to calculate
g from the relation

1 e (198)

swa SWC

since a plot of [(1/s,,.) — (1/s,,.)] vs ¢ has a slope of g. The analysis could
also be done with the other model (Eq. 189) to describe s,,,, and the analysis
can be extended to other self-associations, including a sequential, indefinite
self-association. A test of these methods has been applied to the self-
association of the -G globulin studied by Kakiuchi and Williams (134);
the results are listed in Table 3. Note that g and g have different values.
Also note that s, evaluated using either model, Eq. (189) or (190), to de-
scribed s, agreed quite well with each other. The disagreement with the
Kakiuchi and Williams method may reflect the fact that the value of s,
depends on how and where one takes the tangent to the curve of 1/s,,
Vs ¢

It is also possible to evaluate s,,, the apparent z-average sedimentation
coefficient (42, 135), since with Model 1I (Eq. 190), s,, is given by

_ d(es,g) _

S Swa + CM (199)
dc

dc
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TABLE 3
Estimation of s, from the Data of Kakiuchi and Williams (134)°
Model 53 (sec) g (di/g) g (di/g)
1(Eq. 189) 9.4 0.32 —
1 (Eq. 189) 10.3 + 0.20° 0.35 + 0.03 —
IT (Eq. 190) 10.25 + 0.20¢ —_— 0.034 + 0.0002

75, = 7.25; K, — 21.5 dl/g.

*Values reported by Kakiuchi and Williams (/34) using a method based on Eq.
(194).

Method based on Eq. (35) of Weirich, Adams, and Barlow (42); nine data points
were used for estimating s,.

“Method based on Eq. (197); see also Eq. (24) of Weirich, Adams, and Barlow.
Twelve data points were used for the estimation of s,.

One can also get s, or s5,, with Model I. In fact, if one can measure
any weight-average property, X, of a self-associating solute, then it is
possible to obtain the z-average property (42), X, since

Here X, could be a weight-average partition coefficient, o, elution
volume, V, ., or any weight or apparent weight-average property that
can be measured. It is also possible to obtain a number-average property,
X,., from a combination of equilibrium and transport methods (42). It
should be evident that one can combine equations for X, or its apparent
value, X, in a manner similar to that done with s, or s,,, so that X, X,
and other quantities, such as a concentration dependence parameter, can
be evaluated. By combining equilibrium and transport techniques we can
learn far more about the self-associating solute than we could learn from
either technique alone. This is a very new development, and more work
of this kind should appear in the future.
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